South Central College

MTT 2230 Quality Assurance III

Course Outcome Summary

Course Information

Description
This course is a continuation of Quality Assurance II. New topics include more alternative measuring techniques and final inspection of advanced project. (Prerequisites: MTT 2130)

Total Credits 2
Total Hours 48

Types of Instruction

<table>
<thead>
<tr>
<th>Instruction Type</th>
<th>Credits/Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lec</td>
<td>1/16</td>
</tr>
<tr>
<td>Lab</td>
<td>1/32</td>
</tr>
</tbody>
</table>

Pre/Corequisites

MTT 2130

Institutional Core Competencies

Communication - Students will be able to demonstrate appropriate and effective interactions with others to achieve their personal, academic, and professional objectives.

Critical and Creative Thinking - Students will be able to demonstrate purposeful thinking with the goal of using a creative process for developing and building upon ideas and/or the goal of using a critical process for the analyzing and evaluating of ideas.

Course Competencies

1. Incorporate Geometric Dimensioning and Tolerancing (GD&T)

 Learning Objectives
 Explain the general overview, geometric characteristic symbols, rules, terms and definitions
 Describe measurement principles, open set-up and Coordinate Measuring Machine (CMM)
 Use Coordinate Measuring Machine (CMM)

2. Explain limits of size

 Learning Objectives
 Describe Rule #1
 Identify features with & without size
 Explain limits & fits
3. **Describe position tolerancing and verification**
 Learning Objectives
 - Describe plus/minus tolerances
 - Interpret datum reference frames
 - Explain datum precedence
 - Identify basic dimensions
 - Explain maximum material condition (MMC), least material condition (LMC), reference feature size (RFS) feature modifiers
 - Describe profile tolerancing

4. **Verify product plans and virtual condition**
 Learning Objectives
 - Create a definition drawing, manufacturing process plan, dimensional measurement plan
 - Describe boundaries
 - Explain calculating virtual size
 - Use perpendicularity as a refinement of position

5. **Describe the datum reference frame**
 Learning Objectives
 - Describe datums, datum features, datum feature simulators
 - Describe holes, slots, shafts, tabs, widths as datum features
 - Explain datum feature precedence
 - Identify the constraining degrees of freedom
 - Describe datum feature simulator requirements
 - Describe partial datum features

6. **Explain form tolerances**
 Learning Objectives
 - Identify flatness, straightness
 - Identify circularity, cylindricity

7. **Explain orientation tolerances**
 Learning Objectives
 - Identify perpendicularity, parallelism, angularity
 - Explain orientation as a refinement of location

8. **Identify advanced profile tolerances**
 Learning Objectives
 - Explain profile of a surface and line
 - Use profile to control size, form, orientation and location
 - Describe bilateral and unilateral tolerances
 - Explain application and verification principles
 - Explain profile measurement data reporting
 - Describe free state and restrained condition

9. **Describe coaxial and runout tolerances**
 Learning Objectives
 - Create datum features with a single datum axis (A-B)
 - Use position to control coaxiality
 - Describe circular runout and total runout
 - Describe concentricity and symmetry
 - Use profile to control coaxiality

SCC Accessibility Statement
South Central College strives to make all learning experiences as accessible as possible. If you have a disability and need accommodations for access to this class, contact the Academic Support Center to request

Additional information and forms can be found at: www.southcentral.edu/disability

This material can be made available in alternative formats by contacting the Academic Support Center at 507-389-7222.